

Apr 20-8:03 AM

Feb 7-11:19 AM

The Correlation Coefficient (r)

- a statistic that measures the Strengthand direction of a linear (straight line) relationship
- The symbol is "__ " and it can take any value from __ ! to __!

The direction of the relationship, positive or negative, is given by the $\underline{\text{sign}}$ of the r value

- a positive value for r (+) indicates that the relationship is positive (____ and right)
 - a negative value for r (-) indicates that the relationship is negative (<u>down</u> and right)

Feb 7-11:22 AM Feb 7-11:47 AM

Feb 7-11:55 AM Feb 7-12:13 PM

Important Facts About Correlation:

- \bullet It only describes the strength of straight line relationships.
- $\bullet\,$ It is represented by the letter r
- Positive r means positive association between the variables and negative r means negative association between the variables.
- Is always between -1 and +1.
- Does not change when we change the units of measurement (if we measure something in inches rather than centimeters, the correlation does not change)
- If we reverse x and y, we get the same correlation
- Strongly affected by outliers

Find the correlation of the following		
data:	1	
height	weight	
60	120	What does
62	135	the
65	135	correlation
68	140	tell you?
68	150	r=.7
68	135	borderline of weak as height increases,
67	130	the weight increases
How does the correlation change if you		
add someone who is 61 inches tall and 🚕 🖰		
weighs 150 pounds? r=.28		

Feb 15-10:33 AM Feb 23-9:51 AM

Causation vs. Correlation

Just because two variables have a strong correlation, does not mean that one caused the other.

Sometimes, it can just be a coincidence, but in most cases where one event does not cause the other, there is a _____ \underset ur king \underset variable_

A lurking variable is neither your x or your y value but has an influence on the relationship between them.

Correlation:

Ex: There is a strong positive relationship between the amount of time a person spends watching TV and their body fat percentage. Therefore, watching TV causes you to get fatter.

Causation:

Ex: There is a strong positive relationship between the number of beers a person drinks and their blood alcohol content. Therefore, drinking more beer causes an increase in your blood alcohol content.

Feb 7-7:43 PM Feb 16-2:46 PM

Homework:

Section 6.2 Worksheet

Talk About EXTRA CREDIT

Feb 16-2:47 PM Oct 17-8:56 PM